Содержание
«Военная Литература»
Биографии

Аэродинамические опыты

Аэродинамические опыты Можайского долго оставались в тени. Он вошел в историю техники как конструктор, создатель первого в мире самолета, как человек, первым поднявший самолет в воздух. А Можайский-исследователь был позабыт, хотя и вел долгую, кропотливую исследовательскую работу, необходимую подготовительную работу для того, чтобы мечта о самолете превратилась в действительность.

Какой груз может поднять крыло данной площади? Как изменится величина поднимаемого груза при изменении скорости полета? Под каким углом к направлению движения следует установить крылья летательного аппарата? Как найти тот угол, при котором достигается наилучшее отношение между подъемной силой и сопротивлением крыла? Вот первые вопросы, которые встали перед Александром Федоровичем Можайским, когда он обдумывал конструкцию летательной машины. Теперь каждый, кто изучил основы авиации, даст ответ на эти вопросы. В те годы, когда Можайский начинал [105] свою исследовательскую работу, на эти вопросы не могли ответить даже крупнейшие представители науки.

Только опыт мог дать ответ и на эти, первоначальные, неизбежно возникающие у конструктора вопросы, и на все те, которые должны были встать перед ним в ходе проектирования.

Есть два совершенно различных приема постановки опытов. Ученик профессора Н. Е. Жуковского, академик Б. Н. Юрьев{23}, сравнивая исследовательскую работу с поисками в неизученной местности, говорит, что исследователь

«пытается с помощью своей теории как бы продолжить «линию известного» в пределах еще неисследованного. При таком развитии теории обычно с некоторого пункта исследователю становится ясным, что далее можно идти с одинаковым правом по двум или даже по нескольким путям. На вопрос, — какой путь выбрать на таком перекрестке, — может ответить лишь опыт».

Продолжая такую работу, исследователь в конце концов приходит к опыту, дающему решение поставленной задачи.

«Такой прием работы, — подчеркивает академик Б. Н. Юрьев, — обеспечивает скорейший успех и требует производства лишь немногих, но хорошо выбранных опытов».

Но часто поступают иначе, намечая всевозможные варианты решения задачи, и делают множество совершенно равноценных опытов. При этом ответ на поставленный вопрос ищут в результате опытов, поставленных вслепую.

Этот второй путь технически много сложнее и дороже первого, так как приходится производить [106] множество совершенно бесполезных опытов. И может легко случиться, что при большом количестве произведенных опытов, среди них как раз не окажется нужного, дающего ответ на поставленный вопрос.

Первый метод — путь диалектического подхода к решению задачи — всегда применялся представителями передовой русской науки.

Второй метод — метод эмпирический. Следуя этому методу, американцы однажды испытали свыше полутораста пропеллеров всевозможных форм, но из этих бессистемных опытов не смогли вывести каких-либо общих заключений.

Пользуясь первым приемом, профессор Н. Е. Жуковский поставил всего лишь два правильно намеченных опыта, и они блестяще подтвердили справедливость его вихревой теории воздушного винта.

Можайский, также стихийно применив диалектический опытный метод, получил ответ на основные вопросы, без которых нельзя было на научной основе осуществить проект самолета. Можайский построил специальный испытательный прибор и с его помощью определил аэродинамические характеристики крыльев и других частей самолета.

В «Записках Русского технического общества» за 1883 год было напечатано описание прибора, которым пользовался Можайский при своих опытах. Этот испытательный прибор, реконструированный в наше время{24}, представляет собой четырехколесную тележку, на которой установлена пирамида из стержней. К вершине пирамиды шарнирно крепится труба, внутри которой вставлена другая трубка, способная скользить в первой. На выдвигающейся [107] трубке устанавливают под любым углом модель крыла.

К свободному концу скользящей трубки прикреплен шнур, перекинутый через ролик, привязанный другим концом к гирьке, лежащей на тележке.

Когда двигают тележку с какой-либо скоростью, то на модели крыла возникает подъемная сила, которая поднимает крыло, приводя его в положение II. Зная, что подъемная сила равна весу крыла, можно ее определить, взвешивая модель крыла.

Сила сопротивления, которая также возникает при движении испытательной тележки, перемещает модель крыла из положения II в положение III, поднимая гирьку.

В этих опытах аэродинамические силы, действующие на модели, уравновешиваются и весом модели и гири. Если установить крыло под другим углом, а тележку двигать с прежней скоростью, то аэродинамические силы, действующие на модель крыла, становятся иными. Измерить их можно тем же способом.

Так, меняя углы установки модели крыла, зная скорость движения испытательной тележки, Можайский определял подъемную силу и лобовое сопротивление. Это были первые в мире систематические опыты над моделями крыльев и других частей самолета.

Прибор Можайского представлял собой, по существу, первые аэродинамические весы, как сегодня называются приборы, которые применяют для измерения аэродинамических сил. Можайский создавал аэродинамические силы, двигая тележку с моделью в неподвижном воздухе. В современных [108] лабораториях применяются аэродинамические трубы, в которых воздушный поток, гонимый мощным вентилятором, набегает на неподвижную модель. В те далекие годы, когда Можайский закладывал основы опытной ветви авиационной науки — экспериментальной аэродинамики, еще не были созданы мощные электродвигатели, поэтому построить аэродинамические трубы было невозможно.

Современная аэродинамическая труба помещается в огромном длинном здании. Ровный гул проникает сквозь стены.

Как только закрывают дверь, все покрывающий гул вытесняет остальные звуки. Громадные многометровые вентиляторы гонят воздух со скоростью, превышающей скорость урагана. Труба, по которой движется воздух, рассечена надвое, и ее части отодвинуты друг от друга. В образовавшееся пространство [109] трубы — в ее открытую рабочую часть вводят самолет. Не маленькую модель самолета, а большой настоящий двухмоторный самолет. Он стоит, опираясь на систему стержней, напоминая гигантское фантастическое насекомое. Стоит, упрямо сопротивляясь давящему на него урагану, невидимой, но колоссальной силе. Только легкое подрагивание крыльев показывает, как трудно противостоять бешеному напору безостановочно мчащейся воздушной массы.

Стержни, которые держат самолет — это рычаги и тяги аэродинамических весов. В закрытой, изолированной от шума, кабинке, исследователь наблюдает за ходом испытания. Бесстрастные стрелки точных приборов показывают величины тех сил и моментов, которые действуют на испытуемый самолет. Все взвешено, измерено, сосчитано.

Наука сегодняшнего дня — это не только «орудие надобности», говоря словами Менделеева, но и «власть знания». В аэродинамических трубах сверхзвуковых скоростей изучается техника завтрашнего, а может быть даже послезавтрашнего дня.

Но все, что выполнил Александр Федорович Можайский при помощи своей маленькой, примитивной тележки, нынче не кажется устарелым, или наивным. С помощью простого прибора выдающийся русский исследователь сделал величайшие аэродинамические открытия, незыблемость которых нельзя поколебать.

Научные открытия Можайского очень важны, так как они опрокидывали неправильные старые представления, опиравшиеся на ошибочные предположения Ньютона. Можайский опроверг отживающие [110] представления, выступил как смелый новатор, как подлинный ученый» как представитель той науки, о которой товарищ Сталин говорит, что

«Наука потому и называется наукой, что она не признает фетишей, не боится поднять руку на отживающее, старое и чутко прислушивается к голосу опыта, практики».

Можайский установил, что существует угол атаки, при котором отношение подъемной силы к силе сопротивления достигает наибольшего значения. Он нашел, что для плоской пластинки, которая положена в основу крыла, этот угол равен 5°. Позже Александр Федорович предложил установить крыло своего самолета именно под этим углом атаки. Теперь принято называть отношение подъемной силы к силе сопротивления качеством, а угол, соответствующий наибольшему качеству — наивыгоднейшим.

Можайский обнаружил, что при угле атаки, равном приблизительно 15°, подъемная сила плоской пластинки достигает своего наивысшего значения. Теперь этот вывод подтвержден и объяснен, и данный угол атаки получил название критического.

Таким образом, именно Александр Федорович Можайский явился первооткрывателем характеристических углов атаки, знание которых предшествует аэродинамическому расчету самолета.

Первая заслуга Можайского — ученого и исследователя — в том, что он заложил основы экспериментальной [111] аэродинамики и установил важнейшие аэродинамические соотношения.

Вторая его заслуга заключается в том, что он применил свои выводы для создания первого в мире аэродинамического расчета самолета.

Можайский дал качественную формулировку для определения динамической подъемной силы:

«Для возможности парения в воздухе существует некоторое отношение между тяжестью, скоростью и величиной площади или плоскости, и несомненно, что чем больше скорость движения, тем большую тяжесть может нести та же площадь».

Он же применил формулы для расчета подъемной силы и силы сопротивления своего самолета. Эти формулы после элементарных математических преобразований приводятся к такой форме, в какой их применяют конструкторы в наши дни.

Можайский все это сделал в годы, когда природа подъемной силы не была еще достаточно изучена, более чем за четверть века до того, как Николай Егорович Жуковский завершил построение новой науки — аэродинамики.

Самолет Можайского явился новым инженерным сооружением. Этот первый в мире самолет был рассчитан, а не построен на основе голой интуиции, и в этом еще одна заслуга Александра Федоровича Можайского — основоположника аэродинамического расчета.

Дальше